
JEFF LARKIN, NVIDIA DEVELOPER TECHNOLOGIES

INTRODUCTION TO COMPILER
DIRECTIVES WITH OPENACC

AGENDA

Fundamentals of Heterogeneous & GPU Computing

What are Compiler Directives?

Accelerating Applications with OpenACC

Identifying Available Parallelism

Exposing Parallelism

Optimizing Data Locality

Misc. Tips

Next Steps

HETEROGENEOUS COMPUTING BASICS

WHAT IS HETEROGENEOUS COMPUTING?
Application Execution

+

GPUCPU

High Data Parallelism
High Serial

Performance

LOW LATENCY OR HIGH THROUGHPUT?

LATENCY VS. THROUGHPUT

F-22 Raptor
• 1500 mph

• Knoxville to San Jose in 1:25

• Seats 1

Boeing 737
• 485 mph

• Knoxville to San Jose in 4:20

• Seats 200

LATENCY VS. THROUGHPUT

F-22 Raptor
• Latency – 1:25

• Throughput – 1 / 1.42 hours = 0.7

people/hr.

Boeing 737
• Latency – 4:20

• Throughput – 200 / 4.33 hours = 46.2

people/hr.

LOW LATENCY OR HIGH THROUGHPUT?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other threads

GPU Streaming Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switchW1

W2

W3

W4

T1 T2 T3 T4

ACCELERATOR FUNDAMENTALS
We must expose enough parallelism to fill the device

Accelerator threads are slower than CPU threads

Accelerators have orders of magnitude more threads

Accelerators tolerate resource latencies by cheaply context switching threads

Fine-grained parallelism is good

Generates a significant amount of parallelism to fill hardware resources

Coarse-grained parallelism is bad

Lots of legacy apps have only exposed coarse grain parallelism

3 APPROACHES TO HETEROGENEOUS
PROGRAMMING

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

SIMPLICITY & PERFORMANCE
Accelerated Libraries

Little or no code change for standard libraries, high performance.

Limited by what libraries are available

Compiler Directives

Based on existing programming languages, so they are simple and
familiar.

Performance may not be optimal because directives often do not
expose low level architectural details

Parallel Programming languages

Expose low-level details for maximum performance

Often more difficult to learn and more time consuming to implement.

Simplicity

Performance

WHAT ARE COMPILER DIRECTIVES?

WHAT ARE COMPILER DIRECTIVES?

int main() {

do_serial_stuff()

#pragma acc parallel loop

for(int i=0; i < BIGN; i++)

{

…compute intensive work

}

do_more_serial_stuff();

}

Execution Begins on the CPU.

Data and Execution moves to the GPU.

Data and Execution returns to the CPU.

Compiler Generates GPU Code

int main() {

do_serial_stuff()

for(int i=0; i < BIGN; i++)

{

…compute intensive work

}

do_more_serial_stuff();

}

Programmer inserts compiler hints.

OPENACC:
THE STANDARD FOR GPU DIRECTIVES

Simple: Directives are the easy path to accelerate compute intensive
applications

Open: OpenACC is an open GPU directives standard, making GPU
programming straightforward and portable across parallel and multi-core
processors

Portable: GPU Directives represent parallelism at a high level, allowing
portability to a wide range of architectures with the same code.

OPENACC MEMBERS AND PARTNERS

ACCELERATING APPLICATIONS WITH
OPENACC

Identify
Available

Parallelism

Parallelize
Loops with
OpenACC

Optimize
Data Locality

Optimize
Loop

Performance

EXAMPLE: JACOBI ITERATION
Iteratively converges to correct value (e.g. Temperature), by computing
new values at each point from the average of neighboring points.

Common, useful algorithm

Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

19

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

JACOBI ITERATION: C CODE

20

while (err > tol && iter < iter_max) {

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Iterate until converged

Iterate across matrix

elements

Calculate new value from

neighbors

Compute max error for

convergence

Swap input/output arrays

Identify
Available

Parallelism

Parallelize
Loops with
OpenACC

Optimize
Data Locality

Optimize
Loop

Performance

IDENTIFY AVAILABLE PARALLELISM
A variety of profiling tools are available:

gprof, pgprof, Vampir, Score-p, HPCToolkit, CrayPAT, …

Using the tool of your choice, obtain an application profile to identify hotspots

Since we’re using PGI, I’ll use pgprof

$ pgcc -fast -Minfo=all -Mprof=ccff laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

57, Generated an alternate version of the loop

Generated vector sse code for the loop

Generated 3 prefetch instructions for the loop

67, Memory copy idiom, loop replaced by call to __c_mcopy8

$ pgcollect ./a.out

$ pgprof -exe ./a.out

IDENTIFY PARALLELISM WITH PGPROF
PGPROF informs us:

1. A significant amount of time is
spent in the loops at line 56/57.

2. The computational intensity
(Calculations/Loads&Stores) is
high enough to warrant OpenACC
or CUDA.

3. How the code is currently
optimized.

NOTE: the compiler recognized the

swapping loop as data movement and

replaced it with a memcpy, but we

know it’s expensive too.

IDENTIFY PARALLELISM

24

while (err > tol && iter < iter_max) {

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Independent loop

iterations

Independent loop

iterations

Data dependency

between iterations.

Identify
Available

Parallelism

Parallelize
Loops with
OpenACC

Optimize
Data Locality

Optimize
Loop

Performance

Don’t forget acc

OPENACC DIRECTIVE SYNTAX

C/C++

#pragma acc directive [clause [,] clause] …]
…often followed by a structured code block

Fortran

!$acc directive [clause [,] clause] …]
...often paired with a matching end directive surrounding a structured code block:

!$acc end directive

OPENACC PARALLEL LOOP DIRECTIVE

parallel - Programmer identifies a block of code containing parallelism. Compiler
generates a kernel.

loop - Programmer identifies a loop that can be parallelized within the kernel.

NOTE: parallel & loop are often placed together

#pragma acc parallel loop

for(int i=0; i<N; i++)

{

y[i] = a*x[i]+y[i];

}

27

Parallel

kernel

Kernel:
A function that runs

in parallel on the

GPU

PARALLELIZE WITH OPENACC

28

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Parallelize loop on

accelerator

Parallelize loop on

accelerator

* A reduction means that all of the N*M values

for err will be reduced to just one, the max.

OPENACC LOOP DIRECTIVE: PRIVATE & REDUCTION

The private and reduction clauses are not optimization clauses, they
may be required for correctness.

private – A copy of the variable is made for each loop iteration

reduction - A reduction is performed on the listed variables.

Supports +, *, max, min, and various logical operations

29

BUILDING THE CODE

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

51, Loop not vectorized/parallelized: potential early exits

55, Accelerator kernel generated

55, Max reduction generated for error

56, #pragma acc loop gang /* blockIdx.x */

58, #pragma acc loop vector(256) /* threadIdx.x */

55, Generating copyout(Anew[1:4094][1:4094])

Generating copyin(A[:][:])

Generating Tesla code

58, Loop is parallelizable

66, Accelerator kernel generated

67, #pragma acc loop gang /* blockIdx.x */

69, #pragma acc loop vector(256) /* threadIdx.x */

66, Generating copyin(Anew[1:4094][1:4094])

Generating copyout(A[1:4094][1:4094])

Generating Tesla code

69, Loop is parallelizable

30

OPENACC KERNELS DIRECTIVE

The kernels construct expresses that a region may contain parallelism and the
compiler determines what can safely be parallelized.

#pragma acc kernels

{

for(int i=0; i<N; i++)

{

x[i] = 1.0;

y[i] = 2.0;

}

for(int i=0; i<N; i++)

{

y[i] = a*x[i] + y[i];

}

}

31

kernel 1

kernel 2

The compiler identifies

2 parallel loops and

generates 2 kernels.

PARALLELIZE WITH OPENACC KERNELS

32

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc kernels

{

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

}

iter++;

}

Look for parallelism

within this region.

BUILDING THE CODE

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

51, Loop not vectorized/parallelized: potential early exits

55, Generating copyout(Anew[1:4094][1:4094])

Generating copyin(A[:][:])

Generating copyout(A[1:4094][1:4094])

Generating Tesla code

57, Loop is parallelizable

59, Loop is parallelizable

Accelerator kernel generated

57, #pragma acc loop gang /* blockIdx.y */

59, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

63, Max reduction generated for error

67, Loop is parallelizable

69, Loop is parallelizable

Accelerator kernel generated

67, #pragma acc loop gang /* blockIdx.y */

69, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

33

OPENACC PARALLEL LOOP VS. KERNELS

PARALLEL LOOP

• Requires analysis by
programmer to ensure safe
parallelism

• Will parallelize what a
compiler may miss

• Straightforward path from
OpenMP

KERNELS

• Compiler performs parallel
analysis and parallelizes what
it believes safe

• Can cover larger area of code
with single directive

• Gives compiler additional
leeway to optimize.

Both approaches are equally valid and can perform equally well.

34

1.00X

1.82X

3.13X

3.90X

4.38X

0.82X

0.00X

0.50X

1.00X

1.50X

2.00X

2.50X

3.00X

3.50X

4.00X

4.50X

5.00X

SINGLE THREAD 2 THREADS 4 THREADS 6 THREADS 8 THREADS OPENACC

Speed-up (Higher is Better)

Why did OpenACC

slow down here?

Intel Xeon E5-

2698 v3 @

2.30GHz

(Haswell)

vs.

NVIDIA Tesla

K40

ANALYZING OPENACC PERFORMANCE
Any tool that supports CUDA can likewise obtain performance information
about OpenACC.

Nvidia Visual Profiler (nvvp) comes with the CUDA Toolkit, so it will be
available on any machine with CUDA installed

Very low

Compute/Memcpy

ratio

Compute 4.7s

Memory Copy 84.3s

1. Copy input data from CPU memory/NIC to

GPU memory

PCIe Bus

PROCESSING FLOW

PROCESSING FLOW

1. Copy input data from CPU memory/NIC to

GPU memory

2. Execute GPU Kernel

PCIe Bus

PROCESSING FLOW

1. Copy input data from CPU memory/NIC to

GPU memory

2. Execute GPU Kernel

3. Copy results from GPU memory to CPU

memory/NIC

PCIe Bus

One step of the

convergence loop

Iteration 1 Iteration 2

EXCESSIVE DATA TRANSFERS

while (err > tol && iter < iter_max)

{

err=0.0;

...

}

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] +

A[j][i-1] + A[j-1][i] +

A[j+1][i]);

err = max(err, abs(Anew[j][i] –

A[j][i]);

}

}

A, Anew resident

on host

A, Anew resident

on host

A, Anew resident on

accelerator

A, Anew resident on

accelerator

These copies

happen every

iteration of the

outer while

loop!*

C

o

p

y
C

o

p

y

And note that there are two #pragma acc parallel, so there are 4 copies per while

loop iteration!

IDENTIFYING DATA LOCALITY

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Does the CPU need the data

between these loop nests?

Does the CPU need the data

between iterations of the

convergence loop?

Identify
Available

Parallelism

Parallelize
Loops with
OpenACC

Optimize
Data Locality

Optimize
Loop

Performance

DEFINING DATA REGIONS

The data construct defines a region of code in which GPU arrays remain on
the GPU and are shared among all kernels in that region.

#pragma acc data

{

#pragma acc parallel loop

...

#pragma acc parallel loop

...

}

Data Region

Arrays used within the

data region will remain

on the GPU until the

end of the data region.

DATA CLAUSES

copy (list) Allocates memory on GPU and copies data from host to
GPU when entering region and copies data to the host
when exiting region.

copyin (list) Allocates memory on GPU and copies data from host to
GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to the host
when exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another containing
data region.

and present_or_copy[in|out], present_or_create, deviceptr.

The next OpenACC makes present_or_* the

default behavior.

ARRAY SHAPING

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C/C++

#pragma acc data copyin(a[0:size]),

copyout(b[s/4:3*s/4])

Fortran

!$acc data copyin(a(1:end)),

copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel, or kernels

OPTIMIZE DATA LOCALITY

#pragma acc data copy(A) create(Anew)

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Copy A to/from the

accelerator only when

needed.

Create Anew as a device

temporary.

REBUILDING THE CODE

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

51, Generating copy(A[:][:])

Generating create(Anew[:][:])

Loop not vectorized/parallelized: potential early exits

56, Accelerator kernel generated

56, Max reduction generated for error

57, #pragma acc loop gang /* blockIdx.x */

59, #pragma acc loop vector(256) /* threadIdx.x */

56, Generating Tesla code

59, Loop is parallelizable

67, Accelerator kernel generated

68, #pragma acc loop gang /* blockIdx.x */

70, #pragma acc loop vector(256) /* threadIdx.x */

67, Generating Tesla code

70, Loop is parallelizable

49

VISUAL PROFILER: DATA REGION

Iteration 1 Iteration 2

Was 128ms

50

1.00X
1.82X

3.13X
3.90X 4.38X

27.30X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

SINGLE THREAD 2 THREADS 4 THREADS 6 THREADS 8 THREADS OPENACC

Speed-Up (Higher is Better)

Socket/Socket: 6.24X

Intel Xeon E5-2698 v3 @ 2.30GHz (Haswell)

vs.

NVIDIA Tesla K40

OPENACC PRESENT CLAUSE

function laplace2D(double[N][M] A,n,m)

{

#pragma acc data present(A[n][m]) create(Anew)

while (err > tol && iter < iter_max) {

err=0.0;

...

}

}

function main(int argc, char **argv)

{

#pragma acc data copy(A)

{

laplace2D(A,n,m);

}

}

It’s sometimes necessary for a data region to

be in a different scope than the compute

region.

When this occurs, the present clause can be

used to tell the compiler data is already on

the device.

Since the declaration of A is now in a higher

scope, it’s necessary to shape A in the present

clause.

High-level data regions and the present clause

are often critical to good performance.

UNSTRUCTURED DATA DIRECTIVES

Used to define data regions when scoping doesn’t allow the use of normal data
regions (e.g. The constructor/destructor of a class).

enter data Defines the start of an unstructured data lifetime

clauses: copyin(list), create(list)

exit data Defines the end of an unstructured data lifetime

clauses: copyout(list), delete(list)

#pragma acc enter data copyin(a)

...

#pragma acc exit data delete(a)

UNSTRUCTURED DATA REGIONS: C++ CLASSES

Unstructured Data
Regions enable OpenACC
to be used in C++ classes

Unstructured data
regions can be used
whenever data is
allocated and initialized
in a different scope than
where it is freed.

class Matrix {

Matrix(int n) {

len = n;

v = new double[len];

#pragma acc enter data create(v[0:len])

}

~Matrix() {

#pragma acc exit data delete(v[0:len])

delete[] v;

}

private:

double* v;

int len;

};

54

Identify
Available

Parallelism

Parallelize
Loops with
OpenACC

Optimize
Data Locality

Optimize
Loop

Performance

Come to S5195 - Advanced

OpenACC Programming on

Friday to see this step and

more.

MISC ADVICE

ALIASING CAN PREVENT PARALLELIZATION
23, Loop is parallelizable

Accelerator kernel generated

23, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x

*/

25, Complex loop carried dependence of 'b->' prevents

parallelization

Loop carried dependence of 'a->' prevents parallelization

Loop carried backward dependence of 'a->' prevents vectorization

Accelerator scalar kernel generated

27, Complex loop carried dependence of 'a->' prevents

parallelization

Loop carried dependence of 'b->' prevents parallelization

Loop carried backward dependence of 'b->' prevents vectorization

Accelerator scalar kernel generated

C99: RESTRICT KEYWORD
Declaration of intent given by the programmer to the compiler

Applied to a pointer, e.g.

float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived
from it (such as ptr + 1) will be used to access the object to which it
points”*

Parallelizing compilers often require restrict to determine independence

Otherwise the compiler can’t parallelize loops that access ptr

Note: if programmer violates the declaration, behavior is undefined

http://en.wikipedia.org/wiki/Restrict

float restrict *ptr
float *restrict ptr

http://en.wikipedia.org/wiki/Restrict

OPENACC INDEPENDENT CLAUSE

Specifies that loop iterations are data independent. This overrides any compiler

dependency analysis. This is implied for parallel loop.

#pragma acc kernels

{

#pragma acc loop independent

for(int i=0; i<N; i++)
{

a[i] = 0.0;
b[i] = 1.0;
c[i] = 2.0;

}
#pragma acc loop independent
for(int i=0; i<N; i++)
{

a(i) = b(i) + c(i)
}
}

kernel 1

kernel 2

Informs the compiler

that both loops are safe

to parallelize so it will

generate both kernels.

WRITE PARALLELIZABLE LOOPS

bool found=false;

while(!found && i<N) {

if(a[i]==val) {

found=true

loc=i;

}

i++;

}

bool found=false;

for(int i=0;i<N;i++) {

if(a[i]==val) {

found=true

loc=i;

}

}

for(int i=0;i<N;i++) {

for(int j=i;j<N;j++) {

sum+=A[i][j];

}

}

for(int i=0;i<N;i++) {

for(int j=0;j<N;j++) {

if(j>=i)

sum+=A[i][j];

}

}

Use countable loops
C99: while->for

Fortran: while->do

Avoid pointer
arithmetic

Write rectangular

loops (compiler

cannot parallelize

triangular lops)

OPENACC ROUTINE DIRECTIVE
The routine directive specifies that the compiler should generate a device
copy of the function/subroutine in addition to the host copy and what type of
parallelism the routine contains.

Clauses:

gang/worker/vector/seq

Specifies the level of parallelism contained in the routine.

bind

Specifies an optional name for the routine, also supplied at call-site

no_host

The routine will only be used on the device

device_type

Specialize this routine for a particular device type.

61

OPENACC DEBUGGING
Most OpenACC directives accept an if(condition) clause

#pragma acc update self(A) if(debug)

#pragma acc parallel loop if(!debug)

[…]

#pragma acc update device(A) if(debug)

Use default(none) to force explicit data directives

#pragma acc data copy(…) create(…) default(none)

NEXT STEPS

1. Identify Available Parallelism

What important parts of the code have available parallelism?

2. Parallelize Loops

Express as much parallelism as possible and ensure you still
get correct results.

Because the compiler must be cautious about data movement,
the code will generally slow down.

3. Optimize Data Locality

The programmer will always know better than the compiler
what data movement is unnecessary.

4. Optimize Loop Performance

Don’t try to optimize a kernel that runs in a few us or ms until
you’ve eliminated the excess data motion that is taking many
seconds.

Step 2
Parallelize Loops

with OpenACC

TYPICAL PORTING EXPERIENCE
WITH OPENACC DIRECTIVES

A
p
p
li
c
a
ti

o
n
 S

p
e
e
d
-u

p

Development Time

Step 1

Identify Available

Parallelism

Step 3

Optimize Data

Locality

Step 4
Optimize Loops

OPENACC AT GTC

S5192 Introduction to Compiler Directives w/ OpenACC Wed 0900-1010 210H

S5388 OpenACC for Fortran Programmers Wed 1400-1450 210H

S5139 Enabling OpenACC Performance Analysis Wed 1500-1525 210H

S5515 Porting Apps to Titan: Results from the Hackathon Wed 1600-1650 210H

S5233 GPU Acceleration Using OpenACC and C++ Classes Thu 0900-0950 210D

S5382 OpenACC 2.5 and Beyond Thu 1530-1555 220C

S5195 Advanced OpenACC Programming Fri 0900-1020 210C

S5340 OpenACC and C++: An Application Perspective Fri 1030-1055 210C

S5198 Panel on GPU Computing with OpenACC and

OpenMP

Fri 1100-1150 210C

Plus many more sessions and OpenACC hang-outs!

NEXT STEPS
Attend more OpenACC sessions at GTC.

Try an OpenACC self-paced lab.

Get a free trial of the PGI Compiler (www.pgroup.com)

Please remember to fill out your surveys.

http://www.pgroup.com/

